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Allscrad-The order of stress singularities at the tip of a crack whiclt is normal to and ends at
an interface between two anisotropic elastic layers in a composite is studied. Assuming that the
stress singularities have the form r --, equations are derived for determining the order of
singularities /c. If the materials on both sides of the interface are identical, /C = ~ is a root of
multiplicity three each of which can be identified with the sinplarity due to, respectively, a
symmetric tensile stress applied at infinity, an antisymmetric plane shear stress and an antiplane
shear stress applied at infinity. When the materials on both sides of the interface are not the same,
there are in general three distinct roots for /c. Numerical examples for a typical high modulus
graphite/epoxy and for a special T300/S208 graphite/epoxy show that /C has three positive roots all
of which are close to ! for most combinations of ply-angles in the two materials.

I. INTRODUCTION

Lightweight composite materials have been used for many years in the aerospaCt~

industries. Some of the most needed design informations are the failure mechanism an,!
the failure criteria. Determination of the failure mechanism and the failure criteria requirel
in general rigorous stress analysis at the singular point in the material. The lack of such
an analysis is one of the impediments in understanding the failure mechanism and in
determining the failure criteria. In the case of layered composite materials in which each
layer is of orthotropic material, experimental observations indicate that the failure modes
are in general either along the interface between the layers or transverse to the layers. For
instance, consider the layered composite shown in Fig. I in which each layer is a fiber
reinforced composite laminate. The fibers lie in the plane of the layers although the
orientation eof the fibers may vary from layer to layer. When the composite is subjected
to an extensional strain in the x,-direction, a delamination may occur along the free-edge
MN. The stress singularities at the free-edge such as the point M were investigated in [I).
It was shown in [I) that, except for certain special combinations of the ply-angles on both
sides of the interface, the stresses have the logarithmic singularity at the free-edge in
addition to the r- K (K >0) singularity. Moreover, unlike the r- It singularity whose
existence depends on the stacking sequence of the layers and the complete boundary
conditions, the existence of the logarithmic singularity at point M depends only on the
ply-angles on both sides of the interface. Instead of the delamination, a transverse crack
shown by the dashed line may occur in the layer. There are stress singularities along the
transverse crack edge MQ which is on the interface between two layers and hence may
initiate a delamination along the interface. The nature of the singularities at the crack edge
such as point 0 is the main interest of this investigation.

For this purpose, we take point 0 as the origin of the rectangular coordinate system
(x.. X2' x,) in which the X2 =0 plane is the interface while the transverse crack lies O~l the
x) =0 plane, Fig. J. In the (X2' x,) plane, Fig. 2, the x,-axis is the interface between the
two materials and a crack in material I is located along the negative A2-axis. The
deformation at and near the origin 0 is certainly three-dimensional, i.e. the displacements
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Fig. I. Geometry of an angle-ply laminated composite.

Fig. 2. A crack which is nonnal to and ends at the interface between two anisoptropic materials.

Uj are functions of X2' x) as well as XI' However, it was shown in [2] that, to the first order
of approximation, the order of singularity at point 0 is affected by the dependence on XI
only to the extent of the strain component £11 at point O. Since the problem is linear, we
will first study the singularity at point 0 due to the displacement field in which Uj are
functions of X2 and X) only. We will then study the singularity at point 0 due to a uniform
extension in the XI-direction and see if additional singularities are present.

When the materials on both sides of the interface are isotropic, the singularity at the
tip of a crack which is normal to and ends at the interface has been studied by many
investigators (see [3-8], for example). In real composites, each layer is fiber reinforced
laminated material and hence should be regarded as an anisotropic material. The problem
of a crack terminating at the interface of two anisotropic materials does not seem to have
been investigated, although the case of orthotropic materials was studied in [9, ]0]. In
Section 2 we present the basic formulations for anisotropic materials in two-dimensional
deformation. Instead ofusing Lekhnitskii's approach[]]] which breaks down in degerlerate
cases [12] and requires a special treatment for the degenerate cases, we employ the analysis
which was originally due to Stroh[13] and further developed by others [14, 15] for studying
surface waves in anisotropic elastic solids. In Section 3 we study the stress singularities at
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a crack tip in a homogeneous anisotropic elastic material, i.e. the material is not layered.
The same problem was studied in [16, 17] for anisotropic elastic solids whose material
property is symmetric with respect to the x) =0 plane, and in [18, 19] for general
anisotropic materials. Bya different approach from that of [16-19], we show that" =0.5
is a triple root singularity for a crack tip in a homogeneous anisotropic medium. In Section
4 we formulate the equations for determining the order of singularities at the tip of a crack
which is normal to and ends at an interface between two general anisotropic materials.
We also show how one can determine the number of roots " in a given region in the
complex ,,-plane. Numerical examples are presented in Section 5 in which both materials
across the interface are of the same orthotropic materials although the orientations of the
axes of symmetry are different. It is shown that there are three positive roots for " and
that all three have the values between 0.333 and 0.698. The fact that we have three positive
" and that they are near the value 0.5 is not surprising in view of the results obtained in
Section 3 for the crack in a homogeneous anisotropic medium. Finally, in Section 6 we
study the stress distribution near the tip of the crack which is normal to the interface
subject to a uniform extensional strain in the x)-direction. We show that a uniform stress
solution exists and hence no additional stress singularity is present due to the uniform
extension.

2. ANISOTROPIC MATERIAL IN TWO·DIMENSIONAL DEFORMATION

In the rectangular coordinate system (X2' X3)' let the displacements "j (i = I, 2, 3) and
hence the strains £ij and the stresses (lij be functions of X2 and X3 only. The strain­
displacement, stress-strain and equilibrium equations can be written as

(Iij =Cij/<P!kp

O(li210X2 + O(li310X3 =0

where repeated indices imply summation and

(I)

(2)

(3)

(4)

are the elasticity constants. A general solution for eqns (1)-(3) can be obtained by letting

"j= vf(Z)

Z=X2+PX3

(5)

(6)

where p and Vj are constants to be determined and/is an arbitrary function of Z [13-15].
Substituting into eqns (1)-(3) we obtain

where

(lij='tijd/ldZ

DiJcvk =0

'tij = (Cij/<2 +PCij/<3)Vk

DiJc = Cl2kl +P(CI2k3 + COU) +p2C13k3•

(7)

(8)

(9)

(10)

For a non-trivial solution of VI' it follows from eqn (8) that the determinant of DiJc must
vanish. That is,

( II)

This results in a sextic equation for p. Since the eigenvalues p are all non-real [II, 13], there
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arc three pairs of complex conjugates for P which will be denoted by PL and fiL (L = I.
2, 3) where an over bar denotes the complex conjugate, and three pairs of associated
eigenvectors Vi.L and vi.L (L = I, 2, 3). It should be pointed out that some elements of tlj

given by eqn (9) are related to each other. We can show from eqns (4), (8) and (9) that
rlj = tji and

(12)

They agree with Lekhnitskii's results in [II] except that t)) is taken as unity in [I I].
However, t)) may vanish in degenerate cases [12] and hence Lekhnitskii's approach
requires a special treatment whenever t)) =O.

The general solution for the displacements and stresses can now be written as

U; = L{Vi.JL(ZL) + V;.LKL(2J}
L

(1ij =L{tij.LdfL(ZL)/dZL+ Tij.LdgL(.ZL)/d2d
L

(13)

(14)

where the summation is over L = 1,2,3 andfL and gL are, respectively, arbitrary functions
of ZL and 2L • Notice that eqn (13) contains six arbitrary functions. When p has a double
root, the solution given by eqn (13) is not general unless one has two independent Vi
associated with the double root p. Similarly, eqn (13) may not be a general solution when
p is a triple root. A modified solution which maintains its generality when p has a multiple
root was given in [20]. For isotropic materials, p = i and is a triple root. However, one
of the triple roots is associated with the anti-plane deformation while the other two which
can be considered a double root are associated with plane strain deformations [21).

To study the singularities at a crack tip, we let

(15)

where K, AL and BL are arbitrary constants which may be complex. Introducing the polar
coordinates (', 4»:

X2 =, cos 4>, x) =, sin 4>.

Equations (13) and (14) can be written as

U; = ,1 -KL {ALvi.L~ i -K+BLvi.LC1-K}/(1 - Ie)
L

where

We see that if the real part of" is positive, (1ij is singular at , = O.
When" is real, one may choose without loss of generality[l]

(16)

(17)

(18)

(19)

(20)

where aL and aL are real constants. Equations (17) and (18) then have the real expressions
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Uj= ,1-"L {uLRe(vj.L'l-") + aLlm (vj,Ln-")}/(l - K) (21)
L

Uu=, -" L {aLRe(T ji•L' Z") +aL 1m (Tij.L' Z")} (22)
L

where Re .tnd 1m sland for real and imaginury. respcclivcly.
We may also use Cij instead of cijItp and write eqns (2) and (4) as

(23)

where

£) =£11'

£4 =2£23'

£2 = £22'

£5 = 2£13,

(24a)

(24b)

We will also write the inverse of eqn (23) as

where sij are the elastic compliances.

(25)

3. SINGULARITIES AT A CRACK TIP IN A HOMOGENEOUS ANISOTROPIC
MATERIAL

In this section we assume that material I and material 2 in Fig. 2 are the same material.
Therefore, there is no interface and the crack is in a homogeneous medium. This problem
has been studied in [16, 17] where the material property is assumed to be symmetric with
respect to the Xt =0 plane. No symmetry is assumed in this section. Sih and Chen[18]
and Hoenig[19] also studied the problem without assuming the symmetry, but the analysis
presented here will show that K =! is a root of multiplicity three. The boundary conditions
at the crack surface are

U3j= 0 at 4J = ± n.

From eqn (19) we have

and application of eqn (26) to (18) yields

L {A LT3j.Le
m + BLt 3J.Le-

m } = 0
L

where j = I, 2, 3. Equations (28) llnd (29) may be written in matrix notation as

K(K)q = 0

(26)

(27)

(28)

(29)

(30)

where q is a column matrix whose elements are AL and BL (L = I, 2, 3), while K is a 6 x 6
square matrix and is a function of K. For a nontrivial solution of q we must have

(31)

which provides the roots K.
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Notice thnt when K =!, eKfti =- e-ni = i and the I.h.s. of eqn (28) is identical to that
of eqn (29) except the minus signs. Hence the first three rows of K are identical to the last
three rows except the signs and the rank of K is no more than 3. This means that K = !
is a root of multiplicity of at least 3 and that there are at least 3 independent solutions
for q in eqn (30) associated with K = i.

To find q, Le. AI. and BL for K = i, let

(32)

where {)j. is the Kronecker delta. Thus regarding t3j,L as a 3 x 3 matrix, t~.L is the adjoint
matrix and J is the determinant. Assuming that J ::I: 0, the solution given by

A I J-Ik. B I ]-Ik-.
L= r:; .t3.L' L= r:; .t3JL

2",2 ' 2",2 .
(33)

satisfies eqns (28) and (29) when K =i. k. (s =I, 2, 3) in eqn (33) are arbitrary real
constants. With eqn (33), eqn (18) can now be written as, noticing'that " = i,

(34)

Equation (34) provides three independent solutions for the stress distribution near the
crack tip. Notice that at ~ =0, eqn (34) for i =3 has the expression, after using eqn (19)
and (32),

I
a3j(" 0) =-1 kj , j = I, 2, 3.

(2,)2
(35)

Hence kj are the stress intensity factors. It is shown in the Appendix that the solution
associated with k3 can be identified with the solution near the tip of a crack length 2a due
to a uniform symmetric tensile stress a33 at infinity. Similarly, the solutions associated with
k, and k2 can be identified with the solutions near the tip of a crack length 2a due to
uniform antisymmetric shear stresses a31 and a32' respectively, at infinity.

Equation (34) is not valid when J = O. However, J =0 implies that] = 0 and the rank
of K is no more than two. It follows that" =! is a root of multiplicity of at least four
when J = O. This is not possible because for the special case of a crack in an isotropic
material it is known that K =i is a root of multiplicity three.

4. SINGULARITIES AT THE TIP OF A CRACK NORMAL TO AN INTERFACE

We will now proceed to determine the singularities at the tip ofa crack which is normal
to the interface between two anisotropic materials as shown in Fig. 2. Equations (17) and
(18) for the displacements and the stresses apply to materials I and 2. To distinguish
notations in material 2 from those in material I, we will add a prime to all notations
referring to material 2 except " which is the same in both materials and , and ~ which
have unambiguous definitions. Since material I is divided into two parts by a crack, the
displacements and the stresses in both parts need not be given by the same expressions.
We will therefore use a superscript ( +) to denote quantities referred to material I in the
X3 > 0 region and a superscipt ( - ) to denote quantities referred to material I in the X3 < 0
region.

The stress-free boundary conditions at the crack surface are

ajj = 0 at ~ =1t }

(f j"j =0 at 4> = - 1t
(36a)
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and the continuity conditions at the interface are

u·+ -u~=O }
• + ., 0 at t/> = n/2

(11j -(11j=

U; - uj- = 0 }.J.. /2at 'I' = - X
(1~-(1ij =0

(36c)

where ij = 1,2,3. Use of the expressions for Uj and (1lifrom eqns (17) and (18) in eqn (36a),
(36b), (36c) results in 18 equations for the eighteen coefficients At, Bt, Ai, Bi, Ai and
Bi (L = I, 2, 3) which can again be written in the form

K(IC)q =0 (37)

where K is now an 18 x 18 square matrix and the elements of q are At, Bt, Ai, Bt., Ai
and Bi (L = I, 2, 3). For a nontrivial solution of q, we must have

IIK(IC)II = O. (38)

It should be pointed out that for reallC one could use the real expressions for Uj and
(11i in eqns (21) and (22). We again obtain 18 equations in the form of eqn (37) in which
the elements of q are at, at, at., ai, a/- and ai. The elements of the 18 x 18 matrix K
are real.

The roots IC of eqn (38), whether real or complex, can be found numerically when the
elasticity constants cli and cij of both materials are known. In the complex plane K, one
can find the number of roots IC in a given region by using the following theorem[22]: If
a function "'(K), whose only singularities inside a closed contour C of the K-plane are poles
and whose value is not zero at any point on the contour, then

(39)

(40)

where N is the number of zeros and P is the number of poles inside C. In our problem
'" = IIKII and eqn (39) can be written as

-2
1

. f d{ln IIXI} =N
Xl Jc

because IIKII is bounded and hence there is no pole. In view of the fact that

In '" =In '1/1 I+ i arg '".

Equation (40) reduces to

1
N =2n (arg IIKII)c

(41)

(42)

where (f)c denotes the change in the value offin going around the contour C. Equation
(42) implies that if IIKII has N roots inside the contoW' C in the K-plane, the locus of IIKII
when plotted on the complex IIKII plane encircles the origin N times as K goes around the
contoW' C. This is a useful result which can be employed to determine the number of roots
in a given region.

S. NUMERICAL EXAMPLES

For numerical examples we will assume that each layer in the composite shown in Fig.
I is an orthotropic material with respect to the (Xt, X2' x3) axes where x2 = X2 and the xl-axis
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is the fiber direction which makes an angle (J with the xJ-axis. We further assume that all
layers are identical orthotropic materials although the ply-angle (J may vary from layer to
layer. Referring to the (XI' X2' x) axes. the following engineering constants for two different
orthotropic materials are taken from [23. 24]. respectively.

Composite W

(Typical high modulus graphite/epoxy, [23])

EI= Ei =2.1 x 106 psi

E) =20 x 1()6 psi

GI2 = Gn = GJI =0.85 x 1()6 psi

V21 = VJI = VJ2 =0.21

Composite T

(T300/5208 graphite/epoxy, [24])

E. =E2 =1.54 x 106 psi

EJ=(20 x 1()6 psi)t

GI2 = Gn =GJI =0.81 x I06psi

V21 =VJI = VJ2 =0.28.

(43)

(44)

In eqns (43) and (44), Ej are the Young's moduli, GIj the shear moduli and vij are the
Poisson's ratios [25]. They are related to sij[25, 26], and hence sij can be computed. Since
Eli' Gij and vij given in eqns (43) and (44) are referred to the (XI' X2' XJ) axes, SIj so obtained
will be denoted by slj' Its inverse cij is obtained by using the equations derived in [25].
Finally, we obtain sij and cij which are referred to the (Xl' X2, XJ) axes from slj and cij (see
[2, 12]) when the ply-angle (J in material I is given. For a different ply-angle 9' in material
2, we obtain sij and cij in the same way.

With the elasticity constants cij and cij associated with the ply-angles (J and (J' in
materials I and 2 so determined. the formulation in Section 4 provides the matrix K and
the roots of the determinant IIKII furnish the desired roots. In Table I we list the roots
K for the Composite W given by eqn (43) for combinations of (9/8') angles in which both
8 and (}' assume the values between - 90° and 90° with an increment of 15°. Since the
values of K for (- a/b) and (a/ - b) composites are identical, it is sufficient to consider
0> 0 only. In Table 2 we list the roots K for composite T. In both tables, K =! is a triple
root when 9 =(J' and when (J = - 8' =90°. This is expected since when (J = 0' and
(J = - 0' =90° material I and material 2 have the same fiber oritentation and hence there
is no real interface between material I and material 2. Thus the crack is in a homogeneous
material and the analysis in Section 3 shows that K =i is a triple root. For all other
combinations of «(J /(J') there are three non-equal roots of positive K.

Notice that the values of K are identical for (0/90) and (9/- 90). Likewise, K'S are
identical for (0/0') and (0/ - 8') as well as for (90/9') and (90/ - 8'). Some of the roots
are not easy to locate. For instance, two of the three roots for (0/90) in Composite T differ
by only 10-s. At the first calculation we only located the root K =0.697726 and completely
missed the other two roots. Great effort and care were exercised in locating the two roots
which are very close to each other. We also used eqn (42) to verify numerically that there
are indeed three positive roots for K.

tThe value of E) in [24} is 22 x l()6psi. The calculations presented in Table 2 and Figs. 4 and 6 were
inadvertently based on E) =20 x 10' psi. However. a few sample calculations wit.'1 the correct E) show that thc
errors on IC are no more than 1%.
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Table I. Values of K for the r -. singularity in Composite W

~ 0 15° 30° 45° 60° 75° 90°

.676635 .676012 .672441 .660488 .630471 .567537
90° .500212 .502156 .505068 .504813 .502297 .500314 .5

.5 .500222 .500236 .500227 .500165 .500048

.675051 .665411 .646234 .616354 .571159 .499859
75° .500189 .500305 .500401 .500415 .500269 .5 .499688

.433!)18 .446234 .466560 .485037 .496300 .432561

60°
.665263 .642118 .605628 .557636 .503704 .498608
.499839 .500352 .500735 .500673 .5 .499085 .497668
.379767 .404849 .441810 .477316 .430024 .371402

45°
.643963 .606474 .556388 .522801 .515052 .495691
.499012 .500092 .500639 .5 .498293 .496531 .495008
.369508 .407075 .456342 .443947 .388842 .345965

30°
.609394 .557954 .543655 .558434 .533668 .494600
.498562 .499986 .5 .498192 .495380 .493226 .492252
.391694 .442491 .445399 .400299 .364378 .339747

15°
.560499 .557552 .592813 .595139 .553905 .497659
.499279 .5 .498554 .495627 .492603 .490548 .489828
.438704 .444039 .400073 .369244 .349787 .340358

.562178 .609785 .631434 .620457 .566078 .5
0 .5 .498904 .496201 .493110 .490626 .489298 .489038

.441309 .397243 .367864 .350305 .342401 .341108

.560499 .612345 .644542 .651651 .628243 .564345 .497659
_15° .499279 .497112 .494473 .492080 .490464 .489824 .489828

.438704 .392438 .364451 .349195 .342609 .341721 .340358

.609394 .645821 .662510 .656327 .621931 .552727 .494600
_30° .498562 .496706 .494839 .493276 .492378 .492163 I .492252

.391684 .361115 .347946 .344694 .346998 .349080 I .339747

.643963 .665377 .668725 .651255 .608061 .538511 .495691
_45° .499012 .497882 .496774 .495887 .495504 .495550 .495008

.369508 .352528 .351288 .357999 .367486 .368791 .345965

_60°
.665263 .674013 .666989 .641375 .592892 .526260 i .498608
.499839 .499331 .498824 .498455 .498378 .498488 .497668
.379767 .373635 .381746 .396175 .410685 .409137 .371402

.675051 .674923 .663730 .638493 .593334 .523618 .499859
_75° .500189 .500080 .499972 .499903 .499878 .499848 .499688

.433918 .435943 .447918 .462126 .474130 .476682 .432561

.676635 .676012 .672441 .660488 .630471 .567537
_90° .500212 .502156 .505068 .504813 .502297 .500314 .5

.5 .500222 .500236 .500227 .500165 .500048

The results presented in Table I and 2 are shown in graphs in Figs. 3-6. In Fig. 3
contour lines for the largest K, denoted by Kit are shown for Composite Wand the
corresponding contour lines for Composite T is shown in Fig. 4. In Figs. 5 and 6 the
contour lines for (KI - KJ) where KJ is the smallest of the three roots are shown for
Composite Wand Composite T, respectively. In view of symmetry, only half of the
contour lines are shown in Figs. 3-6. In both composites we see that the largest KI occurs
at (0/ - 90) which is identical to (0/90). At (0/90), KI =0.676635 for Composite Wand
KI =0.697726 for Composite T. The largest difference between KI and KJ occurs approx­
imately at (30/ - 40) for both Composite Wand Composite T.

6. UNIFORM EXTENSION

We will consider in this section the problem in which the composite shown in Fig. 2
is subject to a uniform extensional strain £1 in the xl-direction. For this purpose, we add
the term £lcSilX. to the r.h.s. of eqns (5), (13), (17) and (21) for the displacements U; and
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Table 2. Values of " for the r -. singularity in Composite T

~ 0 15° 30° 45° 60° 75° 90°

-
90°

.6977Z6 .695390 .687400 .670249 .636110 .570493

.5 .501422 .503731 .504020 .502055 .500028 .5

.499990 .499970 .499959 .500004 .500055 .499923

.694552 .682182 .658683 .623468 .573597 .500075
15° .499899 .499923 .500018 .500173 .500205 .5 .499786

.433166 .446108 .465858 .484189 .496196 .429903

60°
.681455 .655864 .615433 .562256 .503193 .498302
.499252 .499572 .500051 .500366 .5 .499051 .497881
.380013 .405261 .440977 .416460 .428481 .367957

.655615 .615621 .561314 .523662 .515215 .496507
45° .498169 .499132 .500048 .5 .498551 .496552 .496224

.310945 .408413 .456362 .440550 .385416 .341936

.615914 .561933 .543669 .559222 .534343 .495858
30° .491892 .499414 .5 .498109 .496016 .493319 .491924

.393350 .443801 .441191 .394941 .359462 .334337

.562542 .556290 .591495 .594666 .553999 .498878
15 0 .499066 .5 .499047 .496372 .493114 .490135 .489680

.439311 .441155 .395191 .363520 .343852 .333397

.561134 .608589 .630402 .620348 .566821 .5
0 .5 .499106 .496752 .493151 .491033 .489363 .488944

.439862 .393682 .362960 .344491 .335554 .333540

I .5(,2542 .(,14806 .646999 .654617 .632281 .568975 .498878
_15° .499066 .491105 .494115 .492462 .490645 .489711 .489680

.439311 .391399 .361050 .344079 .335910 .333613 .333397

.615974 .653461 .610723 .665388 .632110 .562294 .495858
.300 .497892 .496339 .494834 .493407 .492360 .491864 .491924

.393350 .360418 .344095 .338249 .338301 .339280 .334337

_45 0
.655675 .618402 .682644 .666150 .623644 .551195 .496507
.498169 .491416 .496660 .495899 .495381 .495156 .496244
.370945 .350981 .345625 .348152 .355521 .351113 .341936

.681455 .691616 .685410 .660390 .611548 .539832 .498302
_60° .499252 .499019 .498713 .498389 .498218 .498183 .491881

.380013 .310260 .313343 .383591 .395510 .396061 .367957

_15 0
.694552 .695563 .684041 .657219 .609624 .531015 .5001175
.499899 .499852 .499159 .499696 .499104 .499120 .499186
.433166 .431311 .438689 .450101 .461214 .463114 .429903.

_900
. 697126 .695390 .681400 .670249 .636110 .570493
.5 .501422 .503131 .504020 .502055 .500028 .5
.499990 .499910 .499959 .500004 .500055 .499923

the term Cjjll£. to eqns (7), (14), (18) and (22) for the stresses O"u[l, 27]. With these
modifications, application of the boundary and interface conditions, eqns (36), results in
the following system of equations

(45)

where the elements ofq are At, Bt, Ai, Bi, A; and B; while b contains CUll' Since the
r.h.s. of eqn (45) is independent of r, we let" = 0 and obtain

(46)

Equation (46) provides q if K(O) is not singular. If K(O) is singular, a solution may still
exist if b is orthogonal to the left eigenvectors of K(O). However, when" = 0 eqn (18)
indicates that O"ij are constants and the stresses are uniform. Therefore, instead of solving
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e
Fig. 5. Contour lines for the difference between the largest (/(1) and the smallest (/() singularites

for Composite W.

e

Fig. 6. Contour lines for the difference between the largest (K 1) and the smallest (K) singularities
for Composite T.
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eqn (46), we will use an alternate approach employed in [1] to find a uniform stress solution
which satisfies the prescribed uniform extensional strain £1'

To this end, we first solve al from the first of eqn (25):

We then eliminate a l from the rest of eqn (25) to obtain

(j = RjpJ + R'<I' (i oF I, j oF I)

where

The free surface conditions, eqn (36a), imply that

a3+ =a.+ =as+ ==O}
a3- =a.- == as =0

(47)

(48)

(49)

(50)

in the entire region occupied by material I because the stresses are uniform. The continuity
conditions across the interface i/J == ± n/2 as given by eqns (36b, c) can be shown to be
equivalent to

(51)

(52)

From eqns (50) and (51), the stresses (It, (I j- and (I; in the regions n/2 < i/J < n,
- n < i/J < -n/2 and - n/2 < i/J < n/2, respectively, have the following non-zero com­
ponents:

(I j+ == (a 1+ , (12' 0, 0, 0, (16)I
a;- =(a 1- • (12. 0, 0, 0, (16)

(I; =(a\, a2' (Ii, 0, as, (16)

where the superscripts +, - and a prime are omitted for a2 and a6 in view of eqn (51).
Using eqn (52) in eqn (48), the expressions £3 and £5 in material I are

£3 == R32(12 + R36a6+ RJiI }
£5 == RS2a2+ RS6(16 + Rs£]

while the expressions for £3 and £5 in material 2 are

£3 == Ri2(12 + R33(13 + R3SaS+ R l6(16 + Ri£1 }
£5 == Rs2(12 + R S3(1i + Rss(ls + R;'(l6 + R5£I'

(53)

(54)

Again, the superscripts +, - and a prime for £3 and £5 are omitted in view of eqn (51).
For the composite considered in eqn (43) and (44), the material property in each layer

is symmetric with respect to the X2 =0 plane and hence[24, 25],

(55)

This implies that R)6 =Rl6 == RS6 == R;' =0 and elimination of £3 and £5 from eqns (53) and
(54) reduces to

(Ri2 - R32)(l2 + R33a3+ R3S(ls = - (Ri - R3)£1 }
(R S2 - RS2)a2+ RS3ai + Rssas = - (R; - R,)£"

(56)
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Equations (56) provide a one-parameter family of solutions for 0'2' 0'3 and 0',.0'6 is arbitrary
while 0' t, (J.- and (J; are determined from eqn (47). This completes the solution for
non-zero elements of the stresses shown in eqn (52). It is not difficult to see from eqns (52)
and (47) that (J t = (J ,- •

Equations (56) have no solutions if

(57)

For the composites considered here, eqns (57) do not hold and a uniform stress solution
exists for a given extensional strain £1' Hence, there is no additional stress singularity at
the crack tip due to the uniform extension for the composites considered here. If eqns (57)
held, one would have a logarithmic stress singularity at the crack tip [1].

7. CONCLUDING REMARKS

We have shown that the stress singularity at the tip of a crack which is normal to and
ends ul un inlerface between two anisotropic elastic media has the form, -K where" is
a root of eqn (38). We show that there are in general three distinct positive roots of K,

say Ks (s = 1, 2, 3). For each Ks, eqn (37) furnishes the associated q, whose elements are
ALl BL in eqn (18). Since q, is unique up to a multiplicative constant, say Cst the solution
given by eqn (18) for K ="It K2 and "3 can be superimposed and written as

(58)

where (J~) (s = 1, 2, 3) are known functions of t/J. The analysis presented here provides Ks

and (J~) (s = 1, 2, 3). The unknown constants Cit C2 and C3 have to be determined from the
complete boundary conditions of the whole composite. One could use the solution
obtained here to form a special finite element at the crack tip and use regular finite elemenls
elsewhere to find a complete solution numerically for the stress distribulion in the
composite with a crack.

It should be pointed out that eqn (38) provides, besides the three positive K presented
here, infinitely many K whose real part is negative. Thus to increase the accuracy
in the special finite element at the crack tip, one may add as many terms as one pleases
to the r.h.s. of eqn (58). These additional terms are non-singular at the tip of the crack.
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APPENDIX
Consider a crack of length 2a located on the x2-axis between X2 = - a and X2 =a in an infinite anisotropic

elastic material subjected to a uniform tensile stress 17 i3 as well as a uniform plane shear stress 17» (Fig. 7) and
a uniform antiplane shear stress (1':1 (not shown in Fig. 7) at infinity. The surface of the crack is stress-free. This
problem was studied in [16,17] in which the material property is assumed to be symmetric with respect to the XI =0
plane and in [18, 19) for general anisotropic materials. We will present an alternate expression for the solution
in the entire plane, not just near the crack tip as in [19]. For the present problem, it sufficies to consider the
associated problem in which the crack surface is subjected to the stresses

and the stresses vanish at infinity. To this end, we choose in eqns (13, 14)

fL = KL "" AL{(Zi - a 2)1_ Zd/2

where AL arc arbitrary complex constants. We then have the solution for the displacements

u/ "" I: Re {ALv.L«Zi - a~ - ZJ}
L

and the stresses

I1li =I:Re{ALf li.L ( ZL I I)}
L (Zi - a2»

which vanish at infinity. To determine AL, we apply the boundary conditions, eqn (AI):

-11t'=I:Re{ALf 3J•L ( . X2 I I)}, -a<X2<a.
L ±1(a2-xD'

Equation (AS) is satisfied if we let

or

where J and r:.L are defined in eqn (32). We therefore obtain the solution

u/= t Re{r Irt.Ll't.L«Zi -al)! -ZJ}I1;';
I1li=LRe{J-lrt.Lr~.L( ZL j-I)}17;';.

L (Zi _a2

(AI)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)
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Fig. 7. A crack of length 2a subject to uniform stresses at infinity.

To lind the stress distribution ncar the crack tip, say X2 = a, notice that as ZL - a ~ 0

ZL (ZL-a)+a (a)1 J
1= J l-I~ - (ZL- a)-'.

(Zi-a~1 (ZL-a)l(ZL+a)' 2
If we let ZL - a = rCL and

(A 10)

(All)

eqn (A9) reduces to eqn (34). Thus the solution associated with k) in eqn (34) is due to the unifonn
symmetric tensile stress G)J applied at infinity while that associated with k l and k2 are due to, respectively, the
uniform anti-symmetric shear stresses GJ'I and Gri applied at infinity. It should be pointed out that the solution
associated with G3l is not necessarily symmetric with respect to the X2 axis even though the loading at the infinity
is. Likewise, the solutions associated with Gil and Gnare not necessarily anti-symmetric with respect to the X2
axis.


